# Solve Any Equation

Solve Any Equation

In this section we will recall (or learn – it as anyone) the most basic equation. So, what is the equation? Speaking in human language, it's some kind of mathematical expression, where there is an equal sign and the unknown. Which is usually denoted by the letter "x". To solve an equation is to find such values of x, which after the substitution in the original expression that will give us true identity. Recall that an identity is an expression that no doubt even a person, absolutely not burdened with mathematical knowledge. Type 2=2, 0=0, ab=ab, etc. So how to solve the equation? Let's face it.

There are all sorts of equations. But all their infinite variety can be broken just four types.

1. Linear equations.

3. Fractional rational equations.

4. All of the others.)

All the others, of course, more than anything, but...) this includes cubic, and exponential, logarithmic, and trigonometric and all the others. With them, we in the relevant sections tightly will work.

I must say that sometimes the equation of the first three types are so screwed, that you do not know them... Nothing. We will learn how to unwind.

And why do we need these four types? And then that the linear equations are solved one way, others the square, fractional rational third, and the rest are not solved at all! Well, not that absolutely cannot be solved, I wonder maths offended.) Just for them to have their own special techniques and methods

To recognize a linear equation in some cases. For example, if we have an equation in which there are only unknown in the first degree, but the number of. Moreover, the equation has no fractions with division into the unknown, it is important! And dividing it by the number or fraction numeric – please! For example: A quadratic equation is an equation of the form: Fractional equations in these equations of the fraction are always present. But not just fractions, but fractions that have the unknown in the denominator. At least one.

For example:  Last updated: Wednesday, January 3rd, 2018 - 3:55PM