1 Greatest Common Factor Calculator - GCF Calculator
1

Greatest Common Factor Calculator

Greatest common factor (GCF) calculator. Is also known as greateset common divisor (GCD).

GCF calculator

First number:
Second number:
 
Greatest common factor (gcf):
Least common multiple (lcm):

GCF example

Find GCF for numbers 8 and 12:

The divisors of 8 are:

8 = 2×2×2

The divisors of 12 are:

12 = 2×2×3

So the common divisors of 8 and 12 are:

gcf = 2×2 = 4

So 8/12 fraction, can be reduced to 2/3:

8 / 12 = (8/4) / (12/4) = 2 / 3

 


See also
1
Home

Do my Math Homework 1
MATH CALCULATORS
The condition with one obscure, which after the opening of sections and throwing of comparable individuals takes the structure ah + b = 0, where an and b are discretionary numbers, is known as a direct condition with one obscure. Today we will see how to explain these straight conditions. - For instance, all conditions: 2x + 3 = 7 - 0.5x; 0.3x = 0; x/2 + 3 = 1/2 (x - 2) - straight. The estimation of the obscure that turns around the condition to the right balance is known as the arrangement or the foundation of the condition. For instance, in the event that we substitute the number 2 in the condition 3x + 7 = 13 rather than the obscure x, at that point we get the genuine correspondence 3 · 2 +7 = 13. Henceforth, the worth x = 2 is the arrangement or the base of the condition. Furthermore, the worth x = 3 does not change over the condition 3x + 7 = 13 to a genuine balance, since 3 · 2 +7 ≠ 13. Subsequently, the worth x = 3 isn't an answer or a foundation of the condition. The arrangement of any straight conditions is diminished to the arrangement of conditions of the structure ah + b = 0. Move the free term from the left half of the condition to one side, changing the sign before b to the inverse, we get ah = - b. On the off chance that a ≠ 0, at that point x = - b/a.

Users write Now: cool ...Win • a year ago Really like. Easy to use for counting, the only bad thing is that it is not always possible to enter this

More Calculators: integral solver 1
1